HM53462 Series

65,536-Word x 4-Bit Multiport CMOS Video RAM (with Logic Operation Mode)

■ DESCRIPTION

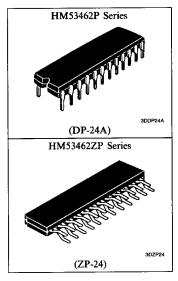
The HM53462 is a 262,144-bit multiport memory equipped with a 64k-word x 4-bit Dynamic RAM port and a 256-word x 4-bit Serial Access Memory (SAM) port. The SAM port is connected to an internal 1,024-bit data register through a 256-word x 4-bit serial read or write access control. In the read transfer cycle, the memory cell data is transferred from a selected word line of the RAM port to the data register. The RAM port has a write mask capability in addition to the conventional operation mode. Write bit selection out of 4 data bit can be achieved. RAM port has another new function, logic operation capability. By this function logic operation between memory data and input data can be done in one cycle. Utilizing the Hitachi 2 µm CMOS process, fast serial access operation and low power dissipation are realized. All inputs and outputs, including clocks, are TTL compatible.

■ FEATURES

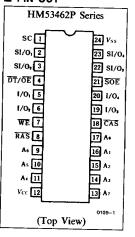
Multiport Organization

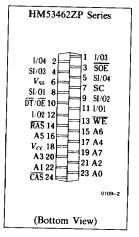
(RAM: 64k-word x 4-bit and SAM; 256-word x 4-bit)

- Double Layer Polysilicon/Polyicide N-Well CMOS Process
- Single 5V (±10%)


Single of (= 10.0)
Low Power
Active RAM
SAM220 mW (max)
Standby40 mW (max)
Access Time
RAM100 ns/120 ns/150 ns
SAM40 ns/40 ns/60 ns
Cycle Time
Random Read or Write Cycle Time (RAM)190 ns/220 ns/260 ns
Serial Read or Write Cycle Time (SAM)40 ns/40 ns/60 ns
TTL Compatible
• 256 Refresh Cycles

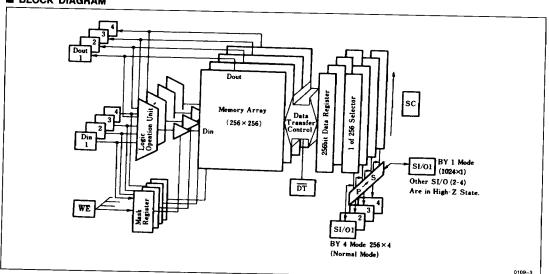
· Refresh Function RAS Only Refresh CAS Before RAS Refresh Hidden Refresh


- Bidirectional Data Transfer Operation (RAM ←→ SAM)
- Fast Serial Access Operation Asynchronized with RAM Port except Data Transfer Cycle
- · Real Time Read Transfer Capability
- Write Mask Mode Capability
- · Logic Operation Capability between Din and Dout
- SAM Organization Can Be Changed to 1024 x 1


■ ORDERING INFORMATION

Part No.	Access Time	Package
HM53462P-10	100 ns	400 mil 24-pin
HM53462P-12	120 ns	Plastic DIP
HM53462P-15	150 ns	(DP-24A)
HM53462ZP-10	100 ns	24-pin
HM53462ZP-12	120 ns	Plastic DIP
HM53462ZP-15	150 ns	(ZP-24)

PIN OUT



■ PIN DESCRIPTION

Pin Name	Function
$A_0 - A_7$	Address Input
I/O ₁ -I/O ₄	RAM Port Data Input/Output
SI/O ₁ -SI/O ₄	SAM Port Data Input/Output
RAS	Row Address Strobe
CAS	Column Address Strobe
SC	Serial Clock
WE	Write Enable
DT/OE	Data Transfer/Output Enable
SOE	SAM Port Enable
v_{CC}	Power Supply
V _{SS}	Ground

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on Any Pin Relative to VSS	v _T	- 1.0 to + 7.0	v
Power Supply Voltage Relative to V _{SS}	v _{cc}	-0.5 to $+7.0$	v
Operating Temperature	T _{opr}	0 to + 70	°C
Storage Temperature	T _{stg}	- 55 to + 125	°C
Short Circuit Output Current	I _{out}	50	mA
Power Dissipation	P _T	1.0	w

■ INPUT/OUTPUT CAPACITANCE

Parameter	Symbol	Тур	Max	Unit	Note
Address	c_{I1}	_	5	pF	
Clocks	C _{I2}	_	5	pF	
I/O, SI/O	$c_{I/O}$	_	7	pF	

■ ELECTRICAL CHARACTERISTICS

• Recommended DC Operating Conditions (T_A = 0 to +70°C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply Voltage	v _{cc}	4.5	5.0	5.5	v	
Input High Voltage	v _{IH}	2.4	_	6.5	v	
Input Low Voltage	v _{IL}	- 0.5	_	0.8	v	2

Notes: 1. All voltages referenced to V_{SS} . 2. -3.0V for pulse width ≤ 10 ns.

• DC Electrical Characteristics ($T_A = 0$ to $+70^{\circ}$ C, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$)

DAM D	C	SAM	Port	HM53462	HM53462	HM53462	Unit	Note
RAM Port	Symbol	Standby	Active	-10	-12	-15	Unit	Note
Operating Current RAS, CAS Cycling	I _{CC1}		×	70	60	50	mA	
$t_{RC} = min$	I _{CC7}	×	_	110	100	80	mA	
Standby Current RAS, CAS = V _{IH}	I _{CC2}	_	×	7	7	7	mA	
Standby Current RAS, CAS = VIH	I _{CC8}	×	_	40	40	30	mA	
RAS Only Refresh Current	I _{CC3}	_	×	60	50	40	mA	
$\overline{CAS} = V_{IH}$, \overline{RAS} Cycling $t_{RC} = \min$	I _{CC9}	×	_	100	90	70	mA	
Page Mode Current RAS = VII.	I _{CC4}	_	×	50	40	35	mA.	
$\overline{\text{CAS}}$ Cycling $t_{\text{PC}} = \min$	I _{CC10}	×	_	90	80	65	mA	
CBR Refresh Current RAS Cycling	I _{CC5}	_	Х	60	50	40	mA.	
$t_{RC} = min$	I _{CC11}	×	_	100	90	70	mA.	
Data Transfer Current	I _{CC6}	_	×	75	65	55	mA	
\overline{RAS} , \overline{CAS} Cycling $t_{RC} = \min$	I _{CC12}	×		115	105	85	mA	

Parameter	Symbol	Min	Max	Unit	Note
Input Leakage	I _{LI}	- 10	10	μΑ	
Output Leakage	I _{LO}	- 10	10	μΑ	
Output High Voltage I _{OH} = - 2 mA	v _{OH}	2.4		v	
Output Low Voltage I _{OL} = 4.2 mA	V _{OL}	T —	0.4	v	

• Electrical Characteristics and Recommended AC Operating Conditions

 $(T_A = 0 \text{ to } +70^{\circ}\text{C}, V_{CC} = 5\text{V} \pm 10\%, V_{SS} = 0\text{V})^{1, 10, 11}$

Domony	Symbol	HM53	462-10	HM53	462-12	HM53	462-15	Unit	Note
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Cint	Non
Random Read or Write Cycle Time	t _{RC}	190	_	220		260	_	ns	
Read-Modify-Write Cycle Time	t _{RWC}	260	_	300	_	355		пѕ	
Page Mode Cycle Time	tPC	70	_	85	_	105		ns	
Access Time from RAS	tRAC	_	100	_	120		150	ns	2, 3
Access Time from CAS	t _{CAC}	-	50	_	60	_	75	ns	3, 4
Outout Buffer Turn-off Delay Referenced to CAS	t _{OFF1}	0	25	0	30	0	40	ns	5
Transition Time (Rise and Fall)	t _T	3	50	3	50	3	50	ns	6
RAS Precharge Time	trp	80	_	90	_	100	_	ns	
RAS Pulse Width	tRAS	100	10000	120	10000	150	10000	ns	
CAS Pulse Width	tCAS	50	10000	60	10000	75	10000	ns	
RAS to CAS Delay Time	tRCD	25	50	25	60	30	75	ns	7
RAS Hold Time	t _{RSH}	50	_	60	_	75	_	ns	
CAS Hold Time	t _{CSH}	100	_	120	_	150	_	ns	
CAS to RAS Precharge Time	tCRP	10	_	10	_	10		ns	
Row Address Setup Time	tASR	0		0	_	0		ns	
Row Address Hold Time	tRAH	15		15	_	20	_	ns	
Column Address Setup Time	tASC	0		0		0	_	ns	
Column Address Hold Time	t _{CAH}	20		20		25	_	ns	ļ —
Write Command Setup Time	twcs	0		0		0		ns	1
Write Command Hold Time	twcs	25		25		30		ns	\vdash
Write Command Pulse Width	twp	15		20		25		ns	t
Write Command to RAS Lead Time		35		40		45		ns	\vdash
Write Command to CAS Lead Time	tRWL	35	-	40		45		ns	
Data-in Setup Time	tes	0		0		0		ns	١,
Data-in Secup Time Data-in Hold Time	t _{DS}	25		25		30		ns	8,
	t _{DH}	0		0		0		ns	 "
Read Command Setup Time	tRCS	-		0		0		ns	┼
Read Command Hold Time	tRCH	0		0		- 0		115	\vdash
Read Command Hold Time Referenced to RAS	trrh	10		10	_	10		ns	_
Refresh Period	tREF		4		4		4	ms	—
RAS Pulse Width (Read-Modify-Write Cycle	tRWS	170	10000	200	10000	245	10000	ns	
CAS to WE Delay	tCWD	85		100		125		ns	
CAS Setup Time (CAS Before RAS Refresh)	t _{CSR}	10	_	10		10	_	ns	
CAS Hold Time (CAS Before RAS Refresh)	tCHR	20	_	25	_	30	_	ns	
RAS Precharge to CAS Hold Time	trpc	10		10		10		ns	
CAS Precharge Time	t _{CP}	10	_	15		20		ns	
Access Time from OE	toac	_	30		35		40	ns	
Output Buffer Turn-off Delay Referenced to OE	t _{OFF2}	0	25	0	30	0	40	ns	
OE to Data-in Delay Time	todd	25	_	30	_	40		ns	
OE Hold Time Referenced to WE	toeh	10		15	_	20		ns	

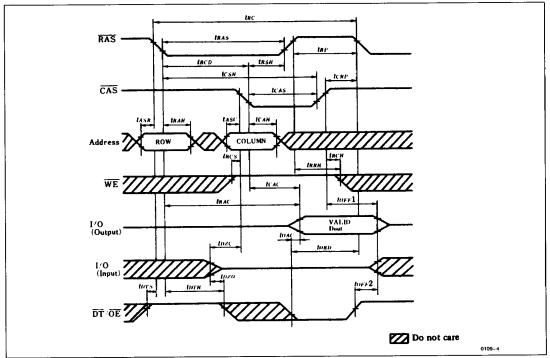
987

• Electrical Characteristics and Recommended AC Operating Conditions (continued)

(T_A = 0 to +70°C, V_{CC} = 5V \pm 10%, V_{SS} = 0V)1, 10, 11

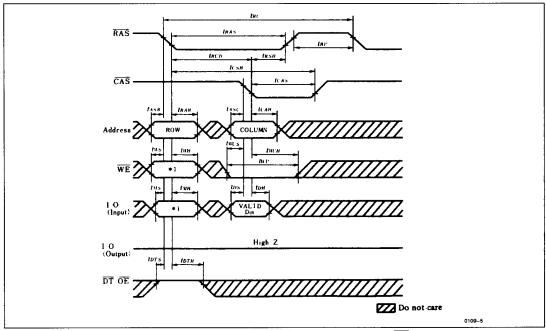
_		HM 53	462-10	HM53	462-12	HM53	462-15		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	Note
Data-in to CAS Delay Time	t _{DZC}	0	_	0	_	0	_	ns	
Data-in to OE Delay Time	t _{DZO}	0	_	0		0		ns	
OE to RAS Delay Time	tORD	35	_	40	_	45	_	ns	
Serial Clock Cycle Time	tSCC	40	_	40	_	60		ns	
Access Time from SC	tSCA	_	40	_	40	_	60	ns	10
Access Time from SOE	tSEA	_	25	_	30	_	40	ns	10
SC Pulse Width	t _{SC}	10	_	10	_	10	_	ns	
SC Precharge Width	tSCP	10	_	10	_	10	-	ns	
Serial Data-out Hold Time after SC High	tson	10		10	_	10	_	ns	
Serial Output Buffer Turn-off Delay from SOE	t _{SEZ}	0	25	0	25	0	30	ns	
Serial Data-in Setup Time	tSIS	0		0		0		ns	
Serial Data-in Hold Time	t _{SIH}	15	_	20	_	25	-	ns	
DT to RAS Setup Time	t _{DTS}	0	_	0	_	0		ns	
DT to RAS Hold Time (Read Transfer Cycle)	t _{RDH}	80	_	90		110	_	ns	
DT to RAS Hold Time	t _{DTH}	15	_	15	_	20	_	ns	
DT to CAS Hold Time	[‡] CDH	20	_	30	_	45	_	ns	
Last SC to DT Delay Time	t _{SDD}	5	_	5	_	10		ns	
First SC to DT Hold Time	t _{SDH}	25		25		30	_	ns	
DT to RAS Delay Time	† _{DTR}	10	_	10	_	10	_	ns	
WE to RAS Setup Time	tws	0	_	0	_	0	_	ns	
WE to RAS Hold Time	twH	15		15	_	20	_	ns	
I/O to RAS Setup Time	tMS	0	_	0	_	0	_	ns	
I/O to RAS Hold Time	t _{MH}	15	_	15	_	20	-	ns	
Serial Output Buffer Turn-off Delay from RAS	tSRZ	10	50	10	60	10	75	ns	
SC to RAS Setup Time	tSRS	30	_	40		45		ns	
RAS to SC Delay Time	tSRD	25		30	_	35	_	пs	
Serial Data Input Delay Time from RAS	tSID	50	_	60	_	75	_	ns	
Serial Data Input to DT Delay Time	t _{SZD}	0		0	_	0	_	ns	
SOE to RAS Setup Time	t _{ES}	0	<u> </u>	0	_	0	_	ns	
SOE to RAS Hold Time	t _{EH}	15	_	15		20		ns	
Serial Write Enable Setup Time	tsws	0	_	0	_	0		ns	
Serial Write Enable Hold Time	tswH	35		35	_	55	_	ns	
Serial Write Disable Setup Time	tswis	0	_	0		0	_	ns	
Serial Write Disable Hold Time	tswih	35	_	35		55		ns	
DT to Sout in Low-Z Delay Time	tDLZ	5	_	10	_	10	_	ns	

Notes: 1. AC measurements assume $t_T = 5$ ns.

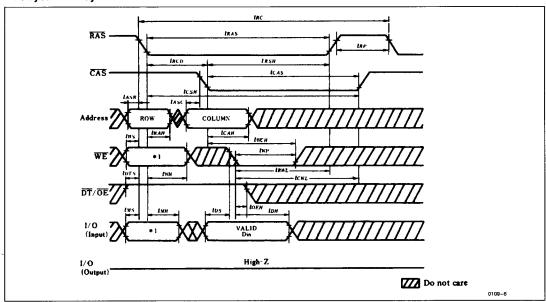

- Assumes that t_{RCD} ≤ t_{RCD} (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.

4. Assumes that $t_{RCD} \ge t_{RCD}$ (max).

- t_{OFF} (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 6. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- 7. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC}.
- 8. t_{WC} and t_{CWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if t_{WCS} ≥ t_{WCS} (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t_{CWD} ≥ t_{CWD} (min), the cycle is a read-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- These parameters are referenced to CAS leading edge in early write cycle and to WE leading edge in delayed write or readmodify-write cycles.
- 10. Measured with a load circuit equivalent to 2 TTL and 100 pF.
- 11. After power-up, pause for more than 100 μs and execute at least 8 initialization cycles. Then execute at least one logic reset cycle including write mask reset (on the falling edge of RAS, WE = "Low" and I/O_I-I/O = "High"), and execute one or more transport cycle for initiation of SAM port.

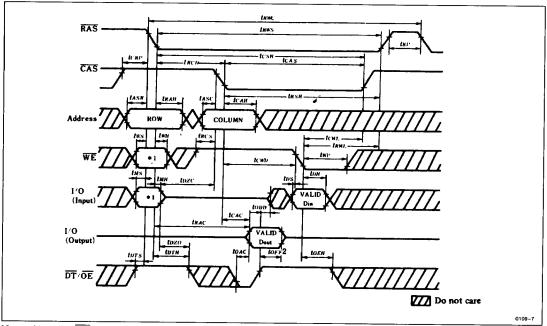

TIMING WAVEFORMS

• Read Cycle

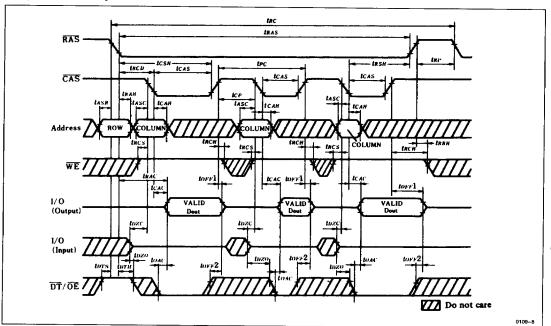

• Early Write Cycle

Notes: *1. When WE is "H" level, then all data on the I/O can be written into the cell. When WE is "L" level, the data on the I/O are not written except for when I/O is "H" level at the falling edge of RAS.

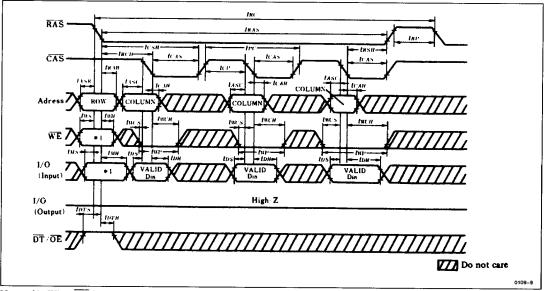
• Delayed Write Cycle


990

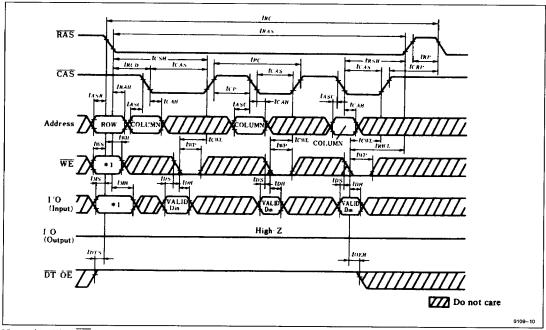
Note: *1. When WE is "H" level, all the data on I/O₁-I/O₄ can be written into the memory cell. When WE is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of RAS.



• Read-Modify-Write Cycle

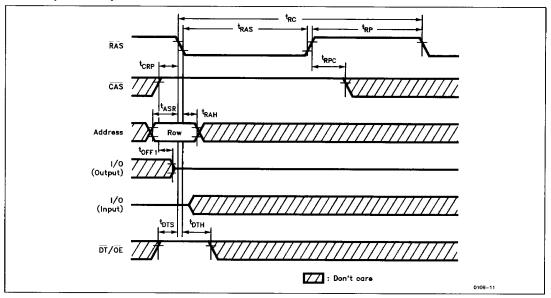

Note: *1. When WE is "H" level, all the data on I/O₁-I/O₄ can be written into the memory cell. When WE is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of RAS.

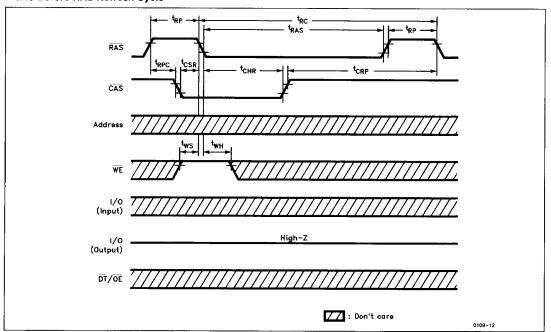
Page Mode Read Cycle

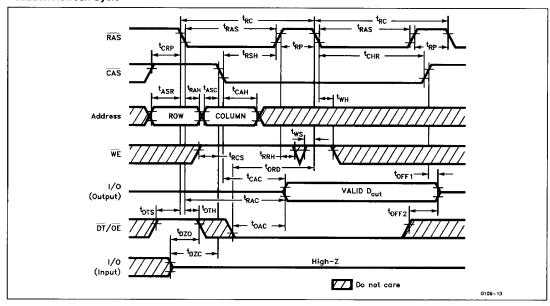


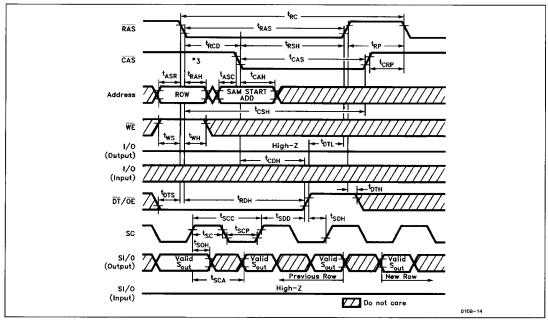
• Page Mode Write Cycle (Early Write)

Note: *1. When WE is "H" level, all the data on I/O₁-I/O₄ can be written into the memory cell. When WE is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of RAS.


• Page Mode Write Cycle (Delayed Write)

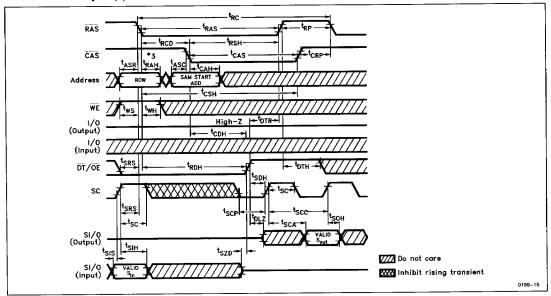

Note: 1. When WE is "H" level, all the data on I/O₁-I/O₄ can be written into the memory cell. When WE is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of RAS.


• RAS Only Refresh Cycle


• CAS Before RAS Refresh Cycle

• Hidden Refresh Cycle

• Read Transfer Cycle (1)*1, *2

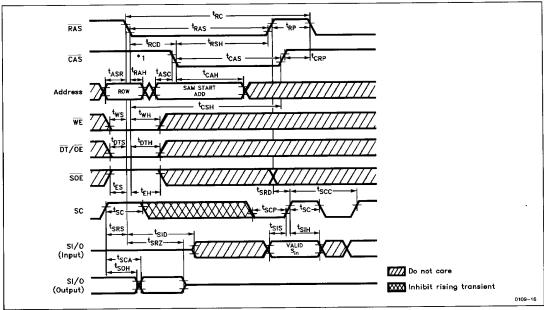

Notes: *1. In the case that the previous data transfer cycle was read transfer.

*2. Assume that SOE is "Low".

*3. CAS and SAM start Address need not be supplied every cycle, only when it is desired to change to a new SAM start Address.

@HITACHI

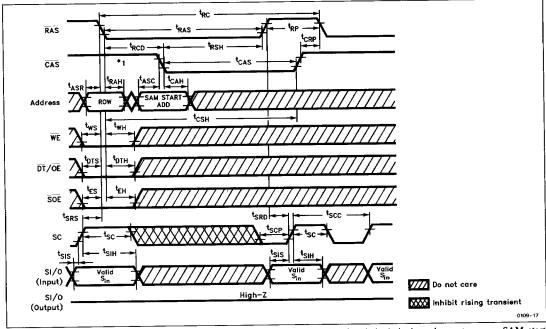
• Read Transfer Cycle (2)*1, *2



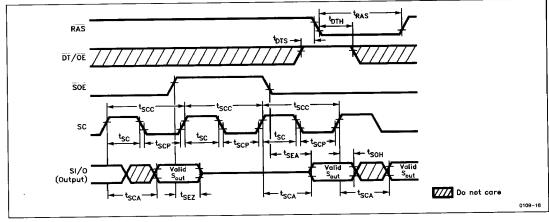
Notes: *1. In the case that the previous data transfer cycle was read transfer.

*2. Assume that SOE is "Low".

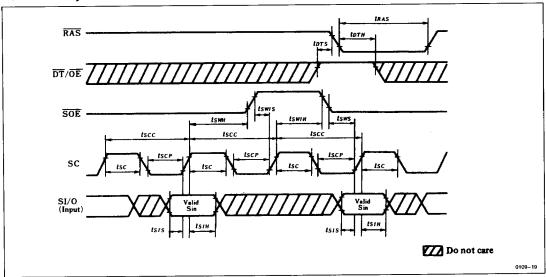
*3. CAS and SAM start Address need not be supplied every cycle, only when it is desired to change to a new SAM start Address.


• Pseudo Transfer Cycle

Note: *1. CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address.



• Write Transfer Cycle



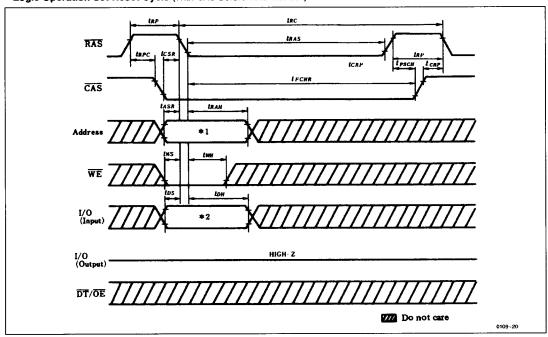
Note: *1. CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address.

• Serial Read Cycle

• Serial Write Cycle

• Electrical AC Characteristics (Logic Operation Mode)

_		HM53	462-10	HM53	3462-12	HM53	462-15	Unit	Note
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Ulli	
Write Cycle Time	tFRC	230	_	265	_	310		ns	
RAS Pulse Width in Write Cycle	t _{RFS}	140	10000	165	10000	200	10000	ns	
CAS Pulse Width in Write Cycle	t _{CFS}	80	10000	95	10000	105	10000	ns	
CAS Hold Time in Write Cycle	tFCSH	140		165	_	200		ns	
RAS Hold Time in Write Cycle	tFRSH	80	_	95	_	105		ns	
Page Mode Cycle Time (Write Cycle)	tFPC	100	_	120	_	135		ns	
CAS Hold Time (Logic Operation Set/Reset Cycle)	t _{FCHR}	90		100		120	_	ns	
CAS Hold Time from RAS Precharge (x4 → x1 Set Cycle)	t _{PSCH}	10	_	10	_	10		ns	

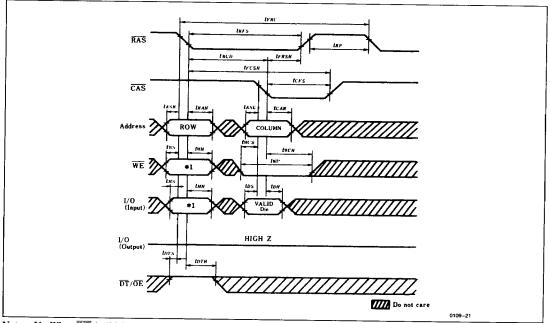

• Logic Code (FC0-3 are AX0-AX3 in Logic Operation Set Cycle)

	g p			(,	
OGIC	LOGIC			FC2	FC3
Write Data	Symbol Write Data		FC1	FC2	FC3
Zero	0	0	0	0	0
Di•Mi	ANDI	1	0	0	0
Di∙Mi	AND2	0	1	0	0
_	X4 → X1	1	1	0	0
Di∙Mi	AND3	0	0	1	0
Di	THROUGH	1	0	1	0
Di •Mi + Di• Mi	EOR	0	1	1	0
Di + Mi	OR1	1	1	1	0
Di∙Mi	NOR	0	0	0	1
Di•Mi + Di•Mi	ENOR	1	0	0	1
Di	INV1	0	1	0	1
Di + Mi	OR2	1	1	0	1
Mi	INV2	0	0	1	1
Di + Mi	OR3	1	0	1	1
Di + Mi	NAND	0	1	1	1
ONE	1	1	1	1	1

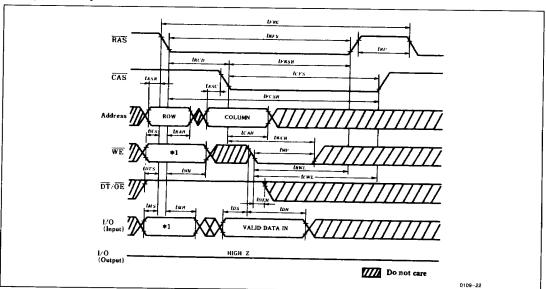
- → SAM Organization Changes to 1024 x 1
- → Logic Operation Mode Reset

- Di :External Data-in
- Mi :The Data of the Memory Cell

• Logic Operation Set Reset Cycle (With CAS Before RAS Refresh)

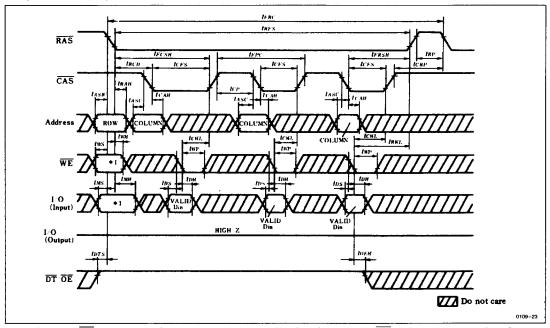

Notes: *1. Logic code A₀-A₃ (A₄-A₇: don't care)

*2. Write mask data.


■ LOGIC OPERATION MODE

Early Write Cycle

Note: *1. When WE is "high", the all data on the I/O can be written into the cell. When WE is "low", the data on the I/O are not written except for when I/O is "high" at the falling edge of RAS.


• Delayed Write Cycle

Note: *1. When WE is "H" level, all the data on I/O₁₋₄ can be written into the memory cell. When WE is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of RAS.

• Page Mode Write Cycle (Delayed Write)

Note: *1. When WE is "high", the all data on the I/O can be written into the cell. When WE is "low", the data on the I/O are not written except for when I/O is "high" at the falling edge of RAS.

• Page Mode Write Cycle (Early Write)

1000

Note: *1. When \overline{WE} is "high", the all data on the I/O can be written into the cell. When \overline{WE} is "low", the data on the I/O are not written except for when I/O is "high" at the falling edge of \overline{RAS} .

■ DESCRIPTION

1. LOGIC OPERATION MODE

HM53462 has an internal logic operation unit which makes a process of graphics simple. The logic is determined in "Logic operation set/reset cycle", and the operation is executed in every write cycle succeeding to the logic operation set/reset cycle. In this mode the internal read-modify-write operation is executed and the cell data is converted into the new data given by the logic operation between Din and the old cell data.

2. LOGIC OPERATION SET/RESET CYCLE

A logic operation set/reset cycle is performed by bringing $\overline{\text{CAS}}$ and $\overline{\text{WE}}$ low when $\overline{\text{RAS}}$ falls (Fig. 1). The logic code and the bits to be masked are determined respectively by AX0-3 state and I/O₁₋₄ state at the falling edge of $\overline{\text{RAS}}$. Furthermore, in this cycle $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh operation is executed, too. In this case of executing the conventional $\overline{\text{CAS}}$ before $\overline{\text{RAS}}$ refresh operation, $\overline{\text{WE}}$ must be high when $\overline{\text{RAS}}$ falls.

2.1 Logic Code

The logic code is shown in Table 1. When power is turned on, at least one logic reset cycle including write mask reset is required to initialize logic code. If the logic code is (AX3, AX2, AX1, AX0) = (0, 0, 1, 1), the SAM organization is changed converter (Fig. 2). In the case that the SAM organization is changed to 1024 x 1, one data transfer cycle is needed to initialize the SAM selector.

One the SAM organization is changed to 1024 x 1, this code is maintained unless power is turned off.

2.2 Write Mask

HM53462 has two kinds of mask registers (register 1, 2). The register 1 is set by bringing WE low at the falling edge of RAS during the write cycle, and the mask data is available only in this cycle. The register 2 is set by level of I/O in the logic operation set/reset cycle, and the mask data is available until the next logic operation set/reset cycle. If the register 1 is set during the current logic operation mode, the mask data of the register 1 is preferred (that of the register 2 is ignored) and the logic becomes "THROUGH" only in this cycle (Fig. 3).

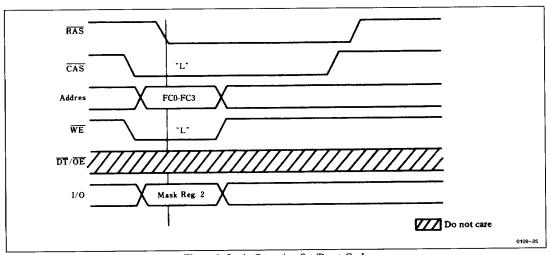


Figure 1. Logic Operation Set/Reset Cycle

• Table 1. Logic Code (FC0-FC3 are AX0-AX3 in Logic Operation Set Cycle)

•	• •	-		•	•	
	LOGIC		ECO	EC.	Eco	FC3
	Write Data	Symbol	FC0	FC1	FC2	FC3
	Zero	0	0	0	0	0
	Di•Mi	ANDI	1	0	0	0
	Di∙Mi	AND2	0	1	0	0
_		$X4 \rightarrow X1$	1	1	0	0
	Di∙Mi	AND3	0	0	1	0
	Di	THROUGH	1	0	1	0
	<u>Di</u> •Mi + Di• <u>Mi</u>	EOR	0	1	1	0
	Di + Mi	OR1	1	1	1	0
	Di∙Mi	NOR	0	0	0	1
	Di•Mi + Di•Mi	ENOR	1	0	0	1
	Di	INV1	0	1	0	1
	Di + Mi	OR2	1	1	0	1
	Mi	INV2	0	0	1	1
	Di + Mi	OR3	1	0	1	1
Di	Di + Mi	NAND	0	1	1	1
Mi	ONE	1	1	1	1	1

- → SAM Organization Changes to 1024 x 1
- → Logic Operation Mode Reset

- Di :External Data-in
- Mi :The Data of the Memory Cell

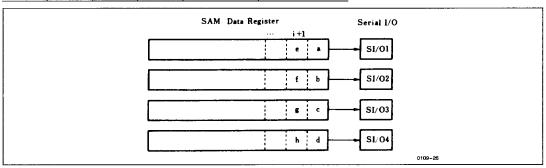
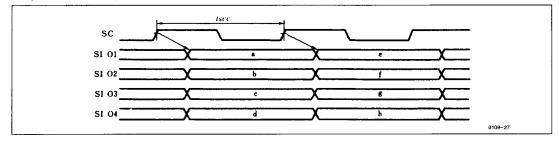
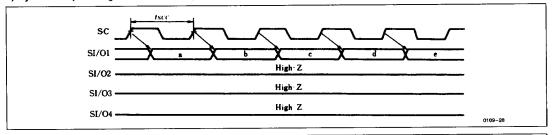




Figure 2. The Shift Way of SAM Data

1) By 4 Mode (SAM Organization: 256 x 4)

2) By 1 Mode (SAM Organization: 1024 x 1)

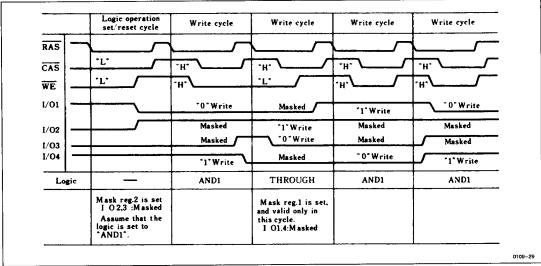


Figure 3. Example of Logic Operation Mode